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A description of phase transitions as recorded by differential scanning calorimetry (DSC) 
is given. A new number N is defined as N = h ' /h, where h is the height of a transition peak 
for a mass of sample m and a heating rate ]Fp and h '  is the height of the same peak for a 
mass 2m or a heating rate 2~'p. N is theoretically derived in the case of isothermal and non- 
isothermal first order phase transitions and of a second order phase transition. The equiv- 
alence of mass and heating rate is proved. An example of the possible use of N is given. 

Differential scanning calorimetry (DSC) is a widely used technique. Among the 
various potential applications, the study of transition peaks, such as melting peaks, is 
one of the most common. The usually available data are the transition temperature 
and enthalpy and sometimes an analysis of the shape of the peak (purity measure- 
ments, isothermal crystallizations). This paper is devoted to another parameter which 
is readily available from a transition peak" the variation of the height of the peak as a 
function of the sample mass or of the heating (or cooling) rate. Part I is a description 
of the theoretical basis of our analysis and part II is devoted to some applications to 
liquid crystalline systems. 

Theoretical background 

In this paper, a thermodynamical phase transition is studied using differential 
scanning calorimetry. This phase transition, which wi l l  be described according to the 
current thermodynamical theories as a first order or a second order one, is recorded 
on the DSC trace as an anomalous change in the differential power ~P, different from 
the normal ~P variation only due to the heat capacity of the material. This variation, 
sharp or smooth, wi l l  be called the "transition peak". We define the height h of the 
peak as the distance between the heat capacity trace, or baseline, and the maximum 
~o during the course of the phase transition. In the case of a pure second order phase 
transition, this height is the difference between the heat capacities before and after 
the transition. In the case of a pure first order phase transition, it is simply the maxi- 
mum height of the peak above the baseline. 
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A number N is defined as N = h'/h,  h' being the height of the transition peak 
when the mass or the heating rate are multiplied by two. The theoretical values of N 
will be determined in the case of an isothermal first order phase transition, a second 
order phase transition and a non-isothermal first order phase transition (case of an 
impure material). Two very simple applications (melting of a pure metal, glass transi- 
tion of an amorphous polymer) will be given for checking the validity of our theoreti- 
cal analysis and a more complicated example will illustrate a possible use of this new 
parameter. 

Isotherma/ first order phase transition 

Several models have been developed for explaining the shape of a DSC melting peak 
of a pure material [1 -4 ] .  These models are valid for any isothermal first order phase 
transition. In this paper, only the simplest expressions describing the melting peak will 
be used [1]. The basic assumption for using these expressions is that the temperature 
of the specimen remains constant during the transition. This is a good approximation 
as far as the thermal resistance of the specimen can be considered as negligible. O'Neill 
[2] has proposed a more sophisticated model taking the thermal resistance of the 
specimen into account. However, it has been shown that this model reduces to the 
simple one described in reference 1 provided that: 

r ' [p(t  2 _ t l  )2 
< <  1 (1) 

R2A 2pAh 

where Tp is the heating rate, (t 2 - t 1 ) is the melting time, r, p and Ah are the thermal 
resistivity, the specific mass and the heat of fusion per unit mass of the specimen, 
respectively, A is the contact area of the sample with the oven and R 0 is the thermal 
resistance between the sample and the oven. 

If the sample temperature is assumed to be constant during melting, the theoretical 
melting curve has the general shape shown in Figure 1. The equations describing such 
a melting curve are the following: 

(i) For t ~< t l ,  i.e. before the beginning of melting, the differential power ~ ( t )  
is only due to the heat capacity of the solid material. So: 

~o(t) = mCps?" p (2) 

where m is the sample mass and Cps the specific heat of the solid material. 
(ii) Between times tl and t2, melting of the sample occurs at a constant tempera- 

ture, and z3P(t) is given by: 

~P(t) -~ T O - (t - t 1 ) 4" mCps7" p (3) 

i 

(iii) At  the end of melting, the sample is still at the melting temperature, whereas 
the programmed temperature is much higher. So, the sample has to reach the 
programmed temperature, which implies the following variation of ~P(t): 
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% t 2 -- t 
)] exp m~oC~/ (4)  .(tl = r . C . , %  + [ m I C . .  - C . , 1 %  + It2 - tl  

where Cp/is the specific heat of the liquid sample. 

From a mathematical point of view, equation (4) shows that the AP curve reaches 
the baseline for an infinite time. Practically, it will be considered that the sample 
reaches the programmed temperature at a time t 3 which is taken when it is impossible 
to measure the difference between the baseline and the AP curve. 

(iv) For t /> t 3 

z~P(t) = mCplT p (5) 

The transition enthalpy mAh is given by: 

t2 Tp t l ) ]  dt 
a m ,  = f [mCp, i'p + ( t -  = 

t ,  Ro 
(6) % 

= mCpsfp(t 2 -- t l ) + ~ (t 2 _ t l )2 

As defined in Figure 1, the height h of the peak has the following expression: 

h = ~ - ( t 2 -  t 1) (7) 

The combination of equations (6) and (7) leads to: 

2 2 "2 2mAhT"p 1 
h = - m C ,  s% + (m C;sr; 4 Ro )2 (8) 

It is easy to see from equation (8) that multiplying by two m or Tp is equivalent. 
N is defined as h'/h, where h' is the height of the peak for a mass 2m or a heating rate 
27-p. So: 

1 

+ (, + C,7o%1 
N = 1 (9) 

2Ah )2- 
- 1 + ( 1 +  2 �9 

mC psR 0 Tp 

When rn or 7"p tends to zero, N tends to 1/2 and when m or ;t-p tends to infinity, 
N tends to 1. The function being without extremum, 

1 < N  < [ 2  (10) 

These limits are only a mathematical consequence of equation (9) and their physical 
significance has to be examined. The upper limit is valid and can be understood in a 
simple way. When 7"p or rn tends to zero, it means that Ah is important and the heat 
capacities negligible. Thus, the transition peak is a triangle (area B = 0 in Figure 1) 
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and N = ~ .  On the contrary, the lower limit cannot be reached since the basic 
assumption of this model is that the melting curve has the shape shown in Figure 1, 
which implies that 7"p and m are small. The exact limits for 7"p and m depend on the 
nature of the sample and its geometry. For instance, in the case of a specimen of pure 
indium with m = 100 rag, the melting curve has the shape described in Figure 1, if 
7"p is lower than 1.25 deg rain -1  . 

Ap 

t 50 i I 
tz t z t 3 

Time 

Fig. 1 Theoretical DSC melting curve of a pure material. ~P is the power difference between the 
sample holder and the reference holder. The heating rate ~'p is constant 

It is much better to multiply 7"p by two rather than m. The first reason is 
experimental, since it is easier to run twice the same sample than to run two different 
samples. Secondly, this model assumes that the thermal resistance R0 is independent 
of mass. This is true only when special case is taken to ensure that the specimen 
geometry, particularly the contact with the pan, and its position remain constant 
(the same requirements are necessary for an accurate determination of temperature). 

When it is not possible to run twice a sample, the following equation gives N in the 
case of two masses ml  and m 2 leading respectively to two peak heights h 1 and h2: 

h2 

I 0"69'n {h1-1 } 1 (11) 
N = e x p  ]'-m--~~ ' 

1 

Second order phase transition 

As a DSC curve is the recording of the differential power z~ ~ versus time t. it is 

possible to write: 

~ P _  dAW dz~/Y dTp (12) 
dt dTp dt 

where Tp is the programmed temperature. This equation is valid only when no first 

order phase transition occurs, Thus: 

dTp 
d~,___WW = mCp and - - -  = 7"p (13) 
dTp dt 
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Equation (12) is then the s~me as equation (2): 

s = mCp 7"p (14) 

When m or 7"p are multiplied by two, ~P is also multiplied by two. A second order 
transition is recorded by DSC as a change of heat capacity, without involving a transi- 
tion energy. Equation (14) is so valid for describing such a transition. In this case, 
h =m7"plCp2 -CplJ where Cpl and Cp2 are the specific heats before and after the 
transition. As a consequence, N = 2. 

Impure material (noreisotherma/ first order transition) 

When the material is impure, the first order phase transition is generally not iso- 
thermal. The presence of impurities lowers the melting point and broadens the melting 
peak. If the impurity is soluble at any quantity in the material, one can describe the 
melting curve using the Van't Hoff equation. This equation is commonly used in the 
DSC technique for measuring the purity of samples [5]. It can be written as: 

dW mz~h(Tf- Tin) 
= (15) 

dTs (T f -  Ts)2 

where Tf is the melting temperature of the pure material, Tm the melting temperature 
of the impure material, Ah the specific enthalpy of transition, T s a temperature where 
a certain amount of material has melted, dW/dT s is related to the power ~P involved 
in the transformation at the temperature T s by: 

dW 
~sP(Ts) = rnCp(Ts) fp + -~ ;  7"p (16) 

At the melting temperature Tm: 

dW m~h 
dT, - Tf--~m (17) 

The height of the peak h is: 

h=  ~P(Tm) -mCp(Tm)T p dW = i 1 8 )  

h=  m~LhTp 
T f -  T m (19) 

When m or 7"p are multiplied by two, h is multiplied by two, and so N = 2. It is 
the same result as for a second order transition, where only heat capacities are in- 
volved. This can be explained by using the theoretical model of Gorter for a second 
order transition [6]. In this model, a second order phase transition is described as the 
end of a non-isothermal first order transition. This is exactly what happens in the case 
of the melting of an impure material as described by the Van't Hoff equation. 
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Practical use of  number N 

Table 1 is a summary of the different N values for the theoretical cases described 
above. How can these theoretical results be used in the case of an experimental 
melting? 

Usually, a baseline under the melting peak is plotted by drawing a straight line 
between the beginning and the end of the peak, since the real baseline is unknown 
(except for very pure sample). The value of N can then give at least two results. 
The first one is to give a qualitative measurement of the relative importance of a 
second order component in a first order phase transition. This will be studied in the 
part II of this paper. The second result is that an anomalous N number may be found. 
It indicates that the transition is not a simple one, but that another phenomenon is 
hidden, as for instance two transitions, very close together, and giving only one peak. 
An example of such a mechanism will be given in the experimental section. 

Table 1 Summary of theoretical N parameters for 
various phase transitions 

Transition N 

Isothermal first order phase transition 1 < N < ]/2 

Impure material 
First order phase transition 2 

Second order phase transition 2 

Experimenlal section 

Materials 

The indium sample used in this work was supplied by Perkin-Elmer Co. Com- 
mercial atactic polystyrene was supplied by BASF. The preparation of N-methyl- 
morpholine N-oxide monohydrate is described in reference [8]. DSC measurements 
were performed with a Perkin-Elmer DSC 2 calorimeter. 

Results 

Isothermal first order transition: Indium 

Indium melts at 156.6 ~ The melting peak recorded by DSC (Fig. 2) agrees very 
well with the theoretical melting peak of a pure sample, as described above (Fig. 1). 
Table 2 shows that 1 < N  < ~ (see equation (10)), N decreasing when 7~p increases. 
This reflects the increasing importance of area B, as seen by looking at t 2 - t l .  This 
leads to a temperature lag ~ T  = Tprogrammed - Tf at the end of the melting which is 
more important when 7"p increases. There is a good agreement between the experi- 
mental and theoretical values of N. 

J. Thermal Anal. 29, 1984 



NAVARD, HAUDIN: THE HEIGHT OF DSC PEAKS I. 411 

2m3s 1 

156 158 160 162 
Temperature ~~ 

Fig. 2 Experimental DSC melting curve of indium 

Table 2 N parameters for the melting of pure indium. 
AT: temperature difference between the 
sample temperature and the programmed 
temperature at time t 2 

~'p, deg min --1 AT,~ N t 2 - t l , S  

1.25 9 0.19 -- 
2.5 5.2 0.22 1.27 
5 3.8 0.32 1.22 

10 3.4 0.57 1.14 

Second order transition: Polystyrene 

The glass transition of amorphous atactic polystyrene was chosen as an example of 
a second order transition. Figure 3 shows the DSC trace recorded for a heating rate 
7"p= 20 deg min -1 .  In a conventional way, the glass transition temperature is taken 
as the mid-point in the thermogram as measured from the extensions of the pre- and 
post transition baselines [7]. As shown in Figure 3, h is defined as the difference 
between the two extrapolated baselines at Tg. For all the investigated heating rates, 
a small endothermic peak was observed in the transition region. This phenomenon, 
which is classical for polystyrene, was not taken into account: the post transition 
baseline is extrapolated through the peak and Tg measured in the conventional manner 
(Fig. 3). Table 3 gives the values of N determined for such a transition. These values 
are close to 2, as predicted by the theory. 

Anomalous first order transition: N-methylmorpholine N-oxide monohydrate [8] 

N-methylmorpholine N-oxide (MMNO) is an organic Compound with a melting 
temperature of 75.6 ~ . When prepared from acetone, the first melting peak and the 
following runs have different shapes (Fig. 4). The textures as observed by optical 
microscopy are different, since the first peak corresponds to the melting of lath-like 
crystals and the following to the melting of MMNO spherulites. The first peak has a N 
value of 1.49. But the next ones have a N value of about 6 showing that something else 
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I 0.36m3 

S I~! , I , 
60 8O 1~ Temperature, =C 

Fig. 3 Glass transition of atactic polystyrene. ~'p = 20 K min- 1 

Table 3 N parameters for the glass transition of 
polystyrene 

tp, deg min- ! Tg, ~ N 

5 7 9  - 

10  81 2 
20 83 2.07 
40 86 1.97 

/IP ~ 1 st melting 
V 

I I'Sm3s-1 j tL~ 

i i t matting 

70 72 7/* 76 78 80 82 Ternperoture ~=C 
Fig. 4 Experimental DSC melting curve of N-methylmorpholine N-oxide. ~'p = 10 K rain- 1 

than a simple melting process occurs. What probably occurs is that the recorded 
melting peak is composed of two or more superposed peaks. This can be seen by 
looking carefully at the melting curves obtained for very slow heating rates: an in- 
flexion of the curve can be observed at a temperature higher than the temperature 
of the peak maximum. Even at 10 deg min -1 ,  this effect is slightly detectable (see 
Fig. 4 or Fig. 8 in reference [8]). So, when changing m or 7"p, the relative position 
of these peaks changes and gives this very high value of N. 
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Conclusion 

The measurement of N is very simple to do, and can give useful informat ion,  e.g. 

showing the importance of  the second order component in a first order phase transi- 

t ion, or detecting anomalies in the transition (see part I I and the example given in 
part I). The equivalence of  m and 7"p for determining N has been shown. The theoreti- 

cal expression of N was derived and studied in the case of first order transitions, both 

isothermal and non-isothermal, as well as in the case of second order transitions. The 

use of 7"p is much easier and more precise than the use of m, since the material, 

the capsule and the thermal resistance R 0 are the same, but is restricted to perfectly 

reversible phase transit ion (not the use of rn). The use of a melt ing rather than a 

freezing curve avoids problems associated wi th  supercooling of  samples, instabi l i ty in 

the melt, crystal l ization mechanisms varying wi th thermal histories (e.g. in polymer 

crystall ization). 

The authors are pleased to acknowledge Dr. B. Monasse for many interesting discussions about 
the theory of DSC and for experimental help in DSC measurements. 
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Zusemmenfa=ung -- Eine Beschreibung von Phaseniiberg~ingen, registriert durch DSC, wird ge- 
geben. Eine naue Zahl N wird aingefiihrt und als N = h '/h definiert, wobei h die H6he des 0ber- 
gangspeaks fiir die Probenmasse m und die Aufheizgeschwindigkeit Tp und h '  die H6he des glei- 
chen Peaks for die Masse 2m oder die Aufheizgeschwindigkeit 27"p sind. N ist im Falle isothermar 
und nichtisothermer 0berg~nge erstar Ordnung und eines Phasen0bergangs zweiter Ordnung theore- 
tisch ableitbar. Die ~quivalenz von Masse und Aufheizgeschwindigkeit wurde iJberpriJft. Ein 
Beispiel fiJr eine mOgliche Anwendung yon N wird angegeben. 

2 J. Thermal Anal. 29, 1984 



414 N A V A R D ,  H A U D I N :  THE H E I G H T  OF DSC PEAKS h 

PeamMe - I'lpHBe/teHO onHcaHHe 1~3OBblX rlepexo~,oB, yctaHO~fleHHbix MeTOAOM ~]~CK. HOBbl~ 
napaMeTp N onpe/~enReTcR Bblpa)KeHHeM N = h ' /h ,  rAe h-BbmOTa nHKa nepexoAa AnR 06pa3tla 
c M8CCO~4 m H CKOpOCTH HarpeBa / 'n,  a h'-BblCOTa 101"O )Ke caMoro 06pa3t~a c MaCCO~ 2m 
cKopocTH HarpeBa 27" n. BellHqHHa N TeopeTHqecKH BblBeAeHa B CJlyNae H3OTepMI4qeCKHX H 
HeH3OTepMHqeCKHX (1383OBblX nepexo/;oB nepBoro nOpRAKa H (I)a30Boro nepexo/ la BToporo 
nopRAKa. ~oKa3aHa 3KBHBaJleHTHOCTb MSCCbl 14 CKOpOCTH Hafpeea. rlpHBeAeH npHMep BO3- 
MON(HOI'O Hcrloflb3OBaHI4R napaMeTpa N. 
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